
READ

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S N P I B yes no

Operand2 C S A yes no

Operand3 C S N yes no

Operand4 C S N P I B yes no

Related Statement: FIND | HISTOGRAM

Function
The READ statement is used to read records from a database. The records can be retrieved in physical sequence, in
Adabas ISN sequence, or in the value sequence of a descriptor (key) field.

This statement causes a processing loop to be initiated.

Number of Records - operand1/ALL
The number of records to be read may be limited by specifying operand1 (enclosed in parentheses, immediately after
the keyword READ) - either as a numeric constant (0 - 99999999) or as a variable, enclosed within parentheses,
immediately after the keyword READ. For example:

 READ (5) IN EMPLOYEES ...

 MOVE 10 TO CNT(N2)
 READ (CNT) EMPLOYEES ...

1Copyright Software AG 2003

READREAD

For this statement, the specified limit has priority over a limit set with a LIMIT statement.

If a smaller limit is set with the profile or session parameter LT, the LT limit applies.

To emphasize that all records are to be read, you can optionally specify the keyword ALL.

Notes:
If you wish to read a 4-digit number of records, specify it with a leading zero: (0nnnn); because Natural interprets
every 4-digit number enclosed in parentheses as a line-number reference to a statement.
Operand1 is evaluated when the READ loop is entered. If the value of operand1 is modified within the READ loop,
this does not affect the number of records read.

MULTI-FETCH Clause
Note:
This clause can only be used for Adabas databases.

[MULTI-FETCH ON | OFF | OF value]

Note:
[MULTI-FETCH OF value] is not evaluated under Windows and UNIX. The default processing mode is applied.

In standard mode, Natural does not read multiple records with a single database call; it always operates in a
one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large number of
database records are being processed.

To improve the performance of those programs, Natural offers a new MULTI-FETCH clause, that allows one to read
more than several records per database access.

For more information, see the section Multi-Fetch Clause in the Natural Programming Guide.

view-name
As view-name, you specify the name of a view, which must have been defined either within a DEFINE DATA
statement or outside the program in a global or local data area.

In reporting mode, view-name may also be the name of a DDM.

PASSWORD and CIPHER Clauses
These clauses are applicable only to Adabas or VSAM databases. They cannot be used with Entire System
Server.

The PASSWORD clause is used to provide a password when retrieving data from a file which is password-protected.

The CIPHER clause is used to provide a cipher key when retrieving data from a file which is enciphered.

See the statements FIND and PASSW for further information.

Copyright Software AG 20032

READMULTI-FETCH Clause

WITH REPOSITION
This option can only be applied if the underlying database is Adabas V7 (or above), Adabas 3.1.1 on Open
Systems, VSAM or DL/I.

With a WITH REPOSITION option, you can make a READ statement sensitive for repositioning events. This allows
you to reposition to another start value within an active READ loop. Processing of the READ statement then
continues with the new start value.

A repositioning event is triggered by one of two ways when you use a READ statement with the WITH
REPOSITION option:

1. When an ESCAPE TOP REPOSITION statement is executed.
At execution of an ESCAPE TOP REPOSITION statement, Natural makes an instant branch to the loop begin
and performs a restart; that is, the database repositions to a new record in the file according to the current
content of the search value variable. At the same time, the loop-counter *COUNTER is reset to zero.

2. when a READ loop tries to fetch the next record from the database and the value of the system variable
*COUNTER is "0".
Note:
If *COUNTER is set to "0" within the active READ loop, processing of the current record is continued; no
instant branch to the loop begin is performed.
You cannot trigger a reposition event in this fashion on Natural for Windows and for UNIX. This functionality
has only been retained for compatibility reasons with Natural Version 3.1 for Mainframes. Therefore, it is not
recommended that you use this process.

Functional Considerations

If the READ statement has a loop-limit (e.g. READ (10) EMPLOYEES WITH REPOSITION ..) and a restart
event was triggered, the loop gets another 10 new records, no matter how many records where already
processed until the repositioning takes place.
If an ESCAPE TOP REPOSITION statement is executed, but the innermost loop is not capable of repositioning
(since the "WITH REPOSITION" keyword is not set in the READ statement or the posted loop statement is
anything else but a READ), a corresponding runtime error is issued.
Since the ESCAPE TOP statement does not allow a reference, you can only initiate a reposition event if the
innermost processing loop is a READ ..WITH REPOSITION statement.
A reposition event does not trigger the execution of the AT START OF DATA section nor, does it trigger the
re-evaluation of the loop-limit operand (if it is a variable).
If the search value was not altered, the loop repositions to the same record like at initial loop start.

Example:

3Copyright Software AG 2003

WITH REPOSITIONREAD

 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF ...
 2 NAME
 1 #STARTVAL (A20) INIT <’A’>
 1 #ATTR (C)
 END-DEFINE
 ...
 SET KEY PF3
 ...
 READ MYVIEW WITH REPOSITION BY NAME = #STARTVAL
 INPUT (IP=OFF AD=O) ’NAME:’ NAME /
 ’Enter new start value for repositioning:’ #STARTVAL (AD=MT CV=#ATTR) /
 ’Press PF3 to stop’
 IF *PF-KEY = ’PF3’
 THEN STOP
 END-IF
 IF #ATTR MODIFIED
 THEN ESCAPE TOP REPOSITION
 END-IF
 END-READ
 ...

 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF ...
 2 NAME
 1 #STARTVAL (A20) INIT <’A’>
 1 #ATTR (C)
 END-DEFINE
 ...
 SET KEY PF3
 ...
 READ MYVIEW WITH REPOSITION BY NAME = #STARTVAL
 INPUT (IP=OFF AD=O) ’NAME:’ NAME /
 ’Enter new start value for repositioning:’ #STARTVAL (AD=MT CV=#ATTR) /
 ’Press PF3 to stop’
 IF *PF-KEY = ’PF3’
 THEN STOP
 END-IF
 IF #ATTR MODIFIED
 THEN RESET *COUNTER
 END-IF
 END-READ
 ...

sequence/range-specification
Note:
In Diagram 3 you will find comparators that may be used as of Natural Version 4.1.1 for Mainframes, Natural
Version 6.1.1 for Windows/UNIX and above. If these comparators are used, the options ENDING AT, THRU and
TO may not be used. These comparators are also valid for the HISTOGRAM statement.

Copyright Software AG 20034

READsequence/range-specification

Options [2] and [3] are not available with Entire System Server.

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand5 S A yes no

Operand6 C S A N P I F B D T L yes no

Operand7 C S A N P I F B D T L yes no

READ IN PHYSICAL SEQUENCE

PHYSICAL SEQUENCE is used to read records in the order in which they are physically stored in a database.

5Copyright Software AG 2003

READ IN PHYSICAL SEQUENCEREAD

For VSAM databases, READ PHYSICAL can only be applied to ESDS and RRDS.

PHYSICAL is the default sequence.

READ BY ISN

READ BY ISN can only be used for Adabas and VSAM databases; for VSAM databases, it is only valid for ESDS
and RRDS.

READ BY ISN is used to read records in the order of Adabas ISNs (internal sequence numbers) or VSAM RBAs
(relative byte addresses of ESDS) or RRNs (relative record numbers of RRDS) respectively.

For XML databases, READ BY ISN is used to read XML objects according to the order of Tamino object IDs.

READ IN LOGICAL SEQUENCE

LOGICAL SEQUENCE is used to read records in the order of the values of a descriptor (key) field.

If you specify a descriptor, the records will be read in the value sequence of the descriptor. A descriptor,
subdescriptor, superdescriptor or hyperdescriptor may be used for sequence control. A phonetic descriptor, a
descriptor within a periodic group, or a superdescriptor which contains a periodic-group field cannot be used.

If you do not specify a descriptor, the default descriptor as specified in the DDM (field "Default Sequence") will be
used.

For DL/I databases, the descriptor used must be either the sequence field of a root segment, or a secondary index
field. If a secondary index field is specified, it must also be specified in the PROCSEQ parameter of a PCB. Natural
uses this PCB and the corresponding hierarchical structure to process the database.
As HDAM databases use a randomizing routine to locate root segments, no sensible results will be returned when
using READ LOGICAL for HDAM databases; therefore you should use READ PHYSICAL for HDAM databases.

For VSAM databases, LOGICAL is only valid for KSDS with primary and alternate keys defined and for ESDS
with alternate keys defined.

If the descriptor used for sequence control is defined with null-value suppression (Adabas only), any record which
contains a null value for the descriptor will not be read.

If the descriptor is a multiple-value field (Adabas only), the same record will be read multiple times depending on
the number of values present.

Note:
READ IN LOGICAL SEQUENCE is also discussed in the Natural Programming Guide; see Statements for Database
Access, READ Statement.

ASCENDING/DESCENDING/VARIABLE/DYNAMIC SEQUENCE

This clause only applies to Adabas, Adabas 3.1.1 on Open Systems, XML databases, VSAM and SQL
databases. In a READ PHYSICAL statement, it can only be applied to VSAM and DB2 databases.

With this clause, you can determine whether the records are to be read in ascending sequence or in descending
sequence.

The default sequence is ascending (which may, but need not, be explicitly specified by using the keyword
ASCENDING).
If the records are to be read in descending sequence, you specify the keyword DESCENDING.
If, instead of determining it in advance, you want to have the option of determining at runtime whether the
records are to be read in ascending or descending sequence, you either specify the keyword VARIABLE or

Copyright Software AG 20036

READREAD BY ISN

DYNAMIC, followed by a variable (operand5). Operand5 has to be of format/length A1 and can contain the
value "A" (for "ascending") or "D" (for "descending").

If keyword VARIABLE is used, the reading direction (value of operand5) is evaluated at start of the
READ processing loop and remains same until the loop is terminated, regardless if the operand5 field is
altered in the READ loop or not.
If keyword DYNAMIC is used, the reading direction (value of operand5) is evaluated before every record
fetch in the READ processing loop and may be changed from record to record. This allows to change the
scroll sequence from ascending to descending (and vice versa) at any place in the READ loop.

Note for Adabas databases:

In order to use the sequences DESCENDING and VARIABLE, your system requires the following Adabas
versions (or above): Version 3.1 on UNIX and Windows and Version 6.1 on mainframe computers.
In order to use the DYNAMIC sequence, your system requires Adabas V7 (or above) and on mainframe
computers and Adabas 3.1.1 on Open Systems.

Note for XML databases:
For XML databases, DYNAMIC SEQUENCE is not available.

Example of DESCENDING Option:

 READ EMPLOYEES IN DESCENDING SEQUENCE BY NAME = ’SMITH’

Example of VARIABLE Option:

 DEFINE DATA LOCAL
 1 #DIRECTION (A1) INIT <’A’> /* ’A’ = ASCENDING
 1 #EMPVIEW VIEW OF EMPLOYEES
 2 NAME
 ...
 END-DEFINE
 ...
 IF *PF-KEY = ’PF7’
 THEN MOVE ’D’ TO #DIRECTION
 END-IF
 READ #EMPVIEW IN VARIABLE #DIRECTION SEQUENCE BY NAME = ’SMITH’
 ...
 END-READ
 ...

Example of DYNAMIC Option:

7Copyright Software AG 2003

ASCENDING/DESCENDING/VARIABLE/DYNAMIC SEQUENCEREAD

 DEFINE DATA LOCAL
 1 #DIRECTION (A1) INIT <’A’> /* ’A’ = ASCENDING
 1 #EMPVIEW VIEW OF EMPLOYEES
 2 NAME
 ...
 END-DEFINE
 ...
 READ #EMPVIEW IN DYNAMIC #DIRECTION SEQUENCE BY NAME = ’SMITH’
 INPUT (AD=O) NAME
 / ’Press PF7 to scroll in DESCENDING sequence’
 / ’Press PF8 to scroll in ASCENDING sequence’
 ..
 IF *PF-KEY = ’PF7’ THEN MOVE ’D’ TO #DIRECTION END-IF
 IF *PF-KEY = ’PF8’ THEN MOVE ’A’ TO #DIRECTION END-IF
 END-READ
 ...

Further Examples:

See the programs READSCND and REAVSEQ in the library SYSEXRM.

STARTING FROM ... ENDING AT/TO

The STARTING FROM and ENDING AT clauses are used to limit reading to a set of records based on a
user-specified range of values.

The STARTING FROM clause (= or EQ or EQUAL TO or [STARTING] FROM) determines the starting value for
the read operation. If a starting value is specified, reading will begin with the value specified. If the starting value
does not exist in the file, the next higher (or lower for a DESCENDING read) value will be used. If no higher (or
lower for DESCENDING) value exists, the loop will not be entered.

In order to limit the records to an end-value, you may specify an ENDING AT clause with the terms THRU,
ENDING AT or TO, that imply an inclusive range. Whenever the read descriptor field exceeds the end-value
specified, an automatic loop termination is performed. Although the basic functionality of the TO, THRU and
ENDING AT keywords looks quite similar, internally they differ in how they work.

THRU/ENDING AT

If THRU or ENDING AT is used, only the start-value is supplied to the database, but the end-value check is
performed by the Natural runtime system, after the record is returned by the database. If the read direction is
ASCENDING, you have to supply the lower value as the start-value and the higher-value as the end-value, since the
start-value represents the value (and record) returned first in the READ loop. However, if you invoke a backwards
read (DESCENDING), the higher value has to appear in the start-value and the lower-value in the end-value.

Internally, to determine the end of the range to be read, Natural reads one record beyond the end-value. If you have
left the READ loop because the end-value has been reached, be aware that this last record is in fact not the last
record within the demanded range, but the first record beyond that range (except if the file does not contain a further
record after the last result record).

The THRU and ENDING AT clauses can be used for all databases which support the READ or HISTOGRAM
statements.

TO

If the keyword ’TO’ is used, both the start-value and the end-value are sent to the database and Natural does not
perform checks for value ranges. If the end-value is exceeded, the database reacts the same as when "end-of-file" is
reached and the database loop is exited. Since the complete range checking is done by the database, the lower-value
(of the range) is always supplied in the start-value and the higher-value filled into the end-value, regardless if you are

Copyright Software AG 20038

READSTARTING FROM ... ENDING AT/TO

browsing in ASCENDING or DESCENDING order.

The TO option is only applicable if the underlying database is Adabas V7 (or above), Adabas 3.1.1 on Open
Systems, Tamino, DB2, VSAM or DL1.

The following list describes the functional differences between the usage of the THRU/ENDING AT and TO
options.

THRU/ENDING AT TO

When the READ loop terminates because the end-value
has been reached, the view contains the first record
"out-of-range".

When the READ loop terminates because the end-value
has been reached, the view contains the last record of
the specified range.

If a end-value variable is modified during the READ
loop, the new value will be used for end-value check on
next record being read.

The end-value variable will only be evaluated at READ
loop start. All further modifications during the READ
loop have no effect.

An incorrect range (e.g. READ .. = ’B’ THRU ’A’) does
not cause a database error, but just returns no record.

An incorrect range results in a database error (e.g.
Adabas RC=61), because a value range must not be
supplied in descending order.

If a READ .. DESCENDING is used with start- and
end-value, the start value is used to position in the file,
whereas the end-value is used by Natural to check for
"end-of-range". Therefore the start-value is higher than
(or equal to) the end-value.

Since both values are passed to the database, they have
to appear in ascending order. In other words, the
start-value is lower than (or equal to) the end-value, no
matter if you are reading in ascending or descending
order.

In order to check for range overflow, the descriptor value
has to appear in the underlying database view; that is, it
must be returned in the record buffer.

The descriptor is not required in the record fields
returned.

The end-value check for an Adabas multi-value field
(MU-field) or a sub-/super-/hyper-descriptor is not
possible and leads to syntax error NAT0160 at program
compilation.

You may specify an end-value for MU-fields and
sub-/super-/hyper-descriptors.

Can be used for all databases. Can only be used for Adabas V7 (or above), Adabas
3.1.1 on Open Systems, DB2, VSAM or DL1.

STARTING WITH ISN=operand4
This clause applies only to Adabas and VSAM databases.

Access to Adabas

This clause can be used in conjunction with a READ statement in physical or in logical (ascending/descending)
sequence. The value supplied (operand4) represents an Adabas ISN (Internal Sequence Number) and is used to
specify a definite record where to start the READ loop.

Logical Sequence

Even if documented with an equal character "=", the READ statement does not return only those records with
exactly the start value in the corresponding descriptor field, but starts a logical browse in ascending or descending
order, beginning with the start value supplied. If some records have the same contents in the descriptor field, they
will be returned in an ISN-sorted sequence.

9Copyright Software AG 2003

STARTING WITH ISN=operand4READ

The STARTING WITH ISN clause is some kind of a "second level" selection criterion that applies only if the start
value matches the descriptor value for the first record.

All records with a descriptor value that is the same as the start value and an ISN that is "less equal"("greater equal"
for a descending READ) than the start ISN are ignored by Adabas. The first record returned in the READ loop is
either

the first record with descriptor = start value and an ISN "greater" ("less" for a descending READ) than the start
ISN,
or if such a record does not exist, the first record with a descriptor "greater" ("less" for a descending READ)
than the start value.

Physical Sequence

The records are returned in the order in which they are physically stored. If a STARTING WITH ISN clause is
specified, Adabas ignores all records until the record with the ISN that is the same as the start ISN is reached. The
first record returned is the next record following the ISN=start ISN record.

Access to VSAM

This clause can only be used in physical sequence. The value supplied (operand4) represents a VSAM RBA (relative
byte address of ESDS) or RRN (relative record number of RRDS), which is to be used as a start value for the read
operation.

Examples

This clause may be used for repositioning within a READ loop whose processing has been interrupted, to easily
determine the next record with which processing is to continue. This is particularly useful if the next record cannot
be identified uniquely by any of its descriptor values. It can also be useful in a distributed client/server application
where the reading of the records is performed by a server program while further processing of the records is
performed by a client program, and the records are not processed all in one go, but in batches.

For an example, see the program REASISND in the library SYSEXRM.

WHERE Clause

The WHERE clause may be used to specify an additional selection criterion (logical-condition) which is evaluated
after a value has been read and before any processing is performed on the value (including the AT BREAK
evaluation).

The syntax for a logical-condition is described in the section Logical Condition Criteria.

If a LIMIT statement or a processing limit is specified in a READ statement containing a WHERE clause, records
which are rejected as a result of the WHERE clause are not counted against the limit.

System Variables

Copyright Software AG 200310

READWHERE Clause

The Natural system variables *ISN and *COUNTER are available with the READ statement.

The format/length of these system variables is P10. This format/length cannot be changed.

The usage of the system variables is illustrated below.

*ISN

The system variable *ISN contains the Adabas ISN of the record currently being processed.

For VSAM databases, *ISN contains either the RRN (for RRDS) or the RBA (for ESDS) of the current record.

For Tamino, *ISN contains the XML object ID.

For DL/I and SQL databases and with Entire System Server, *ISN is not available.

*COUNTER

The system variable *COUNTER contains the number of times the processing loop has been entered.

11Copyright Software AG 2003

*ISNREAD

Example 1

 /* EXAMPLE ’REAEX1S’: READ (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 END-DEFINE
 LIMIT 3
 /***
 WRITE ’READ IN PHYSICAL SEQUENCE’
 READ EMPLOY-VIEW IN PHYSICAL SEQUENCE
 DISPLAY NOTITLE PERSONNEL-ID NAME *ISN *COUNTER
 END-READ
 /***
 WRITE / ’READ IN ISN SEQUENCE’
 READ EMPLOY-VIEW BY ISN
 STARTING FROM 1 ENDING AT 3
 DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
 END-READ
 /***
 WRITE / ’READ IN NAME SEQUENCE’
 READ EMPLOY-VIEW BY NAME
 DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
 END-READ
 /***
 WRITE / ’READ IN NAME SEQUENCE STARTING FROM ’’M’’’
 READ EMPLOY-VIEW BY NAME
 STARTING FROM ’M’
 DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
 END-READ
 /***
 END

Equivalent reporting-mode example: See the program REAEX1R in the library SYSEXRM.

Copyright Software AG 200312

READExample 1

PERSONNEL NAME ISN CNT
 ID
 --------- -------------------- --------- ---------

 READ IN PHYSICAL SEQUENCE
 50005600 MORENO 2 1
 50005500 BLOND 3 2
 50005300 MAIZIERE 4 3

 READ IN ISN SEQUENCE
 50005800 ADAM 1 1
 50005600 MORENO 2 2
 50005500 BLOND 3 3

 READ IN NAME SEQUENCE
 60008339 ABELLAN 479 1
 30000231 ACHIESON 884 2
 50005800 ADAM 1 3

 READ IN NAME SEQUENCE STARTING FROM ’M’
 30008125 MACDONALD 929 1
 20028700 MACKARNESS 780 2
 40000045 MADSEN 509 3

13Copyright Software AG 2003

Example 1READ

Example 2 - Combining READ with FIND
The following program reads records from the EMPLOYEES file in logical sequential order based on the values of
the descriptor NAME. A FIND statement is then issued to the VEHICLES file using the personnel number from the
EMPLOYEES file as search criterion. The resulting report shows the name (read from the EMPLOYEES file) of
each person read and the model of automobile (read from the VEHICLES file) owned by this person. Multiple lines
with the same name are produced if the person owns more than one automobile.

 /* EXAMPLE ’REAEX2’: READ AND FIND
 DEFINE DATA
 LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 FIRST-NAME
 2 NAME
 2 CITY
 1 VEH-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 END-DEFINE
 LIMIT 10
 RD. READ EMPLOY-VIEW BY NAME STARTING FROM ’JONES’
 SUSPEND IDENTICAL SUPPRESS
 FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)
 IF NO RECORDS FOUND
 ENTER
 END-NOREC
 DISPLAY NOTITLE (ES=OFF IS=ON ZP=ON AL=15)
 PERSONNEL-ID (RD.) FIRST-NAME (RD.)
 MAKE (FD.) (IS=OFF)
 END-FIND
 END-READ
 END

 PERSONNEL FIRST-NAME MAKE
 ID
 --------------- --------------- ---------------

 20007500 VIRGINIA CHRYSLER
 20008400 MARSHA CHRYSLER
 CHRYSLER
 20021100 ROBERT GENERAL MOTORS
 20000800 LILLY FORD
 MG
 20001100 EDWARD GENERAL MOTORS
 20002000 MARTHA GENERAL MOTORS
 20003400 LAUREL GENERAL MOTORS
 30034045 KEVIN DATSUN
 30034233 GREGORY FORD
 11400319 MANFRED

Copyright Software AG 200314

READExample 2 - Combining READ with FIND

	READ
	Function
	Number of Records - operand1/ALL
	MULTI-FETCH Clause
	view-name
	PASSWORD and CIPHER Clauses
	WITH REPOSITION
	Functional Considerations

	sequence/range-specification
	READ IN PHYSICAL SEQUENCE
	READ BY ISN
	READ IN LOGICAL SEQUENCE
	ASCENDING/DESCENDING/VARIABLE/DYNAMIC SEQUENCE
	STARTING FROM ... ENDING AT/TO
	THRU/ENDING AT
	TO

	STARTING WITH ISN=operand4
	Access to Adabas
	Logical Sequence
	Physical Sequence

	Access to VSAM
	Examples

	WHERE Clause
	System Variables
	*ISN
	*COUNTER

	Example 1
	Example 2 - Combining READ with FIND

